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The asymptotic approximation of a shock front to the center of symmetry (R + 0) yields 
unbounded growth of the energy density in the self-similar solution of the problem of a 
convergent shock [i, 2] considered as an infinitely thin mathematical discontinuity in a 
perfect gas. In a real medium the shock front has finite thickness and specific structure 
governed by a set of dissipative physical processes (viscosity, heat conduction, ionization, 
radiation) [3]. This results in restriction of the cumulation described by the gasdynamic 
model to a continuous medium in the neighborhood of the focusing, whose minimal size is 
determined by the gas kinetic path of the particles. Examination of the convergent shock 
on the basis of the solution of the Boltzmann kinetic equation showed [4] that magnitudes 
of the macroparameters (density, pressure, temperature, velocity) of the gas take on finite 
values everywhere. There are a number of papers devoted to studying convergent shocks within 
the framework of the gasdynamic model of a medium with electron or radiant heat conduction 
[5, 6], viscosity, heat conduction and energy exchange between ions and electrons in a two- 
temperature fully ionized plasma [7-10] as well as radiation with a Planck mean absorption 
coefficient (optically thin case) in a three-temperature approximation taken into account 
[ii]. As is known [3], a large difference exists between the mean free paths of photons 
and particles of a medium, whereupon the total problem is asymptotically separated into: 
a) a problem with a shock in a perfect gas with radiation; b) a problem with a shock with- 
out radiation with electron heat conduction and energy exchange taken into account in ion 
and electron collisions, etc. [12]. Continuing the investigations in [5, ii], the problem 
"a" is examined in this paper when the main process governing the front structure is energy 
transfer by radiation and the thickness of the jump due to electron heat conduction and 
other dissipative effects is assumed infinitesimally small. As computations showed, in 
the convergence of strong radiating shocks of supercritical amplitude the main part of the 
path of fronts heated by thermal (TW) and shock waves moves according to self-similar power 
laws analogous to [I, 2]. The transport of energy by radiation not in a state to limit 
cumulative gas energy density as the front approaches the center of symmetry asymptotically 
and the finite dimensions of the focusing neighborhood can be determined only when taking 
account of viscosity in the compression shock. Splitting of the front into two shocks that 
confirm the results of [Ii] is detected in an optically thin medium with strongly nonequi- 
librium radiation. The limit gas density at the time of focusing exceeds the density in 
a perfect gas multiply [i, 2], however, it remains finite. As the gas optical thickness 
grows, when radiation becomes almost equilibrium, the nature of the accumulation is modi- 
fied by going over from perfectly gaseous [i, 2] (finite density and infinite temperature) 
to heat conducting [5] (infinite density, finite temperature). 

i. A gasdynamic flow in a one-temperature approximation was computed by using a known 
Lagrange finite-difference method with artificial viscosity [13] on nonregular mass mesh- 
es with the progressions i,i, constructed from the central cell to the boundary!of the 
computational domain. Energy transport by radiation was examined under the assumption that 
radiation scattering, pressure and energy are small, there is hence a local thermodynamic 
equilibrium in the gas. The main content of the computational method is the following. 
To determine the mean group intensities Jk,j+m • relative to the spectrum, that are given 

at the nodes of the finite-difference mesh [Rj, Rj+I], we use equations written for the 

positive (+) and negative'-(-) directions of radiation propagation in confirmity with the 
ideas described in [14] 

+ 
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Here Sj = RjnARj are coefficients proportional to the cell surface areas in plane, cylindri- 

~h+l 

cal, and spherical cases (n = O, i, 2); Bkj = S Bjdv; B = 15o~3exp-1(~/T - i)/~ ~ is 

~'l~ 

the equilibrium intensity in the k-th spectrum band for the j-th cell (k = i, 2, ..., M); 

Ekj + exp(--rkj+i/2P/Bkj -+); Akj+~/ + + + = 2- = (i -Ekj-)Bkj-/Tkj+i/2; Tkj+i/2 = Xkj+i/2hR j is the 

optical thickness of the j-th cell, • = Xk P x exp(-• ) + [I - exp(-•215 (• P, • R are 

Planck and Rosseland mean absorption coefficients in the k-th quantum energy group), Bkj • 

is the mean cosine of the angle between the direction of radiation propagation and the coor- 

dinate R, gkj • = dkj• - Sj_ l) is the "sphericity" coefficient [15] obtained 

by averaging the intensity along rays tangent to the surface of the spherical layer [16]: 

dk• = (Jk)B=0/(Jk + + Jk-)" In the cylindrical case dk • should take into account of radia- 
tion entrained along the cylinder and depends on the azimuthal angle [17]. 

The first three terms in the right side of (i.i) are obtained under the assumption of 

a linear variation Bj+ I = Bj + (Bj+ I - Bj)(Tj+ I -- ~j)/A~ [18] on the boundaries of a finite 

segment [Rj, Rj+ I] with the optical thickness A~ = Kj+I/2(Rj+I -- Rj). By passing to the 

limit AT § 0, exp(-~/B) ~ i -- ~/B, (R + AR) n ~ R n + nhR n-1 for B • = i/2, the relations (i.i) 

are converted into "forward and back" differential equations in a different geometry n = 0 
[3], n = 2 [19]. In the case of large optical thicknesses the expressions (i.i) correspond 

to the limit approximation of radiant heat conduction [3] J f = B j ~  SjBj--Sj-T1Bj~I [s177 S jTjI~ I/2 The 

b o u n d a r y  c o n d i t i o n s  f o r  ( 1 . 1 )  a r e  g i v e n  a t  t h e  c e n t e r  o f  symmet ry  j = 1, J k l  + = J k l -  and on 
t h e  b o u n d a r y  o f  t h e  domain  u n d e r  c o n s i d e r a t i o n  j = N, JkN- = Jk0 ( Jk0  i s  t h e  mean i n t e n s i t y  
o f  r a d i a t i o n  i n c i d e n t  f r o m  o u t s i d e ) .  A f t e r  h a v i n g  s o l v e d  t h e  2M • N a l g e b r a i c  e q u a t i o n s  
(i.i) by the stream factorization method [20], 
over the spectrum are found 

the total radiation flux and energy density 

M M 
+ + 2 

h = l  h=l 

The problem [21] of the collision of two plane shocks excited by massive pistons in 
bismuth vapors of different optical thickness was considered to check out the method (i.i). 
A heated TS layer that expands at supersonic speed occurred ahead of the shock front. In 
both cases the radiation was substantially nonequilibrium and a fine temperature peak T+ = 
(3 - y)Tf appeared at the front (Tf is the temperature behind the front) [3] that is charac- 
teristic for shocks of supercritical amplitude. Comparison of computations using (i.i) 
for Bk • = i/2 with the data of [21] showed that the propagation velocities of the TS and 
the shock are in agreement, where the difference in T+ was not more than 20% and the dis- 
crepancy of the unilateral radiation energy fluxes Fi from the front did not exceed several 
percent at different times. 

To test the method in the large optical thickness range, a problem was considered about 
the radiational cooling of a fixed gas volume for the plane and spherical cases. Computa- 
tions obtained by using (I.I) completely reproduce the known self-similar solution of this 

problem Rf ~ tl/(k+2) (n = 0) and Rf ~ t I/(~k+2) (n = 2)for k = 6.5 [3], when the optical 
thickness of the heated layer behind the TS front grows to T ~ 10 during cooling. The radi- 
ation in a gas with such optical thickness is in equilibrium with a substance F+ ~ oTf 4 

and reaches the limit of radiant heat conduction. 

2. Selecting the boundary conditions governing the excitation of a strong convergent 
shock with intrinsic radiation during its analysis is apparently not very essential and 
in absence of radiation arriving from outside (J0 = 0) it is su#]icient to satisfy the 
demand [7] that the piston velocity grow more slowly than in a shock. Here, for instance, 
the boundary conditions on dissociation of a discontinuity can be used. At a time t > 0 
let scattering from an external infinite heat gas layer start within a spherical cavity 
of radius R 0 filled with gas of density P0 at a pressure P0- We select the conditions on 
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the discontinuity to be P/P0 = 480 and P/P0 = 8, which are often utilized for the execution 
of test computations of strong shocks [22]. We assume the gas behind the contact boundary, 
the "piston" generating the shock, to be adiabatic and optically transparent, and the in- 
fluence on the cumulative energy loss due to intrinsic radiation of the shock-compressed 
layer in the convergent wave is thereby estimated by the upper bound. Let us note that 
P0, P0 can vary in a sufficiently broad band of values and should be such that the heat 
flux in the gas would be comparable or exceed the hydrodynamic energy flux (in a shock of 
supercritical amplitude F > G ~ pu3/2), but could not be greater than those limits above 
which taking account of the radiation energy and pressure would be necessary. 

As is known [3], the compression shock structure and relaxation zone width in station- 
ary waves of such amplitude are determined by radiation and the difference between the 
ionic and electronic temperatures, viscosities, and heat conductions can be neglected. 
Under these conditions, it is natural and convenient to use the approximation of a fully 
ionized gas for which the thermodynamic relationships and coefficients • ~R of brehm- 
strahlung radiation absorption are well known [3]. Assuming P0, P0 constant, the optical 
characteristics of the gas in the cavity can be variated by changing the charge Z of the 
nucleus which is in the formula for the temperature and the absorption coefficient and whose 
range of variation is determined by the condition of a fully ionized medium. The maximal 

Z can be estimated by the ionization collisional mechanism confirming satisfaction of the 
condition Im/T ~ 0.I (I m is the ionization potential of the last electron from the first 
atom shell), from which we have Z m ~ 30. 

Let us consider the results of computing strong radiating shocks converging to a cen- 
ter of symmetry in a gas of different optical thickness (Z = i and 30). For the Z = 1 modi- 
fication the change in temperature and density is shown in Figs. la and b for wave conver- 
gence and reflection at the times t/t c = 1.002, I, 0.997, 0.993, 0.991, 0.976, 0.875, 0.586, 
0.468 (lines 1-9) as a function of the relative path length traversed by the wave. This 
path is measured from the middle of the first computational cell up to the contact boundary 
with the external gas exciting the shock. Here t c is the time of ultimate gas compression 
at the center (collapse of the shock). It is seen from Fig. la that a TS is propagated 
over the "cold" gas to the center in the initial stage of the motion, behind whose front 
the gasdynamic motion in the heated layer is weak: the mass flow rate reaches only 10% 
of the velocity at the front, the density grows 1.3 times, and the pressure is P/P0 z i00. 
The initial optical thickness of the cavity ~ ~ 103 diminishes to T ~ 1 at the time t/t c = 
0.587 after TS passage; the shock here has almost the critical amplitude. Further shock 
convergence to the center is accompanied by magnification of the cumulative energy density, 
whereupon all the gasdynamic quantities grow in the neighborhood of the front. For t/t c = 
0.875 (Fig. la, curve 7) the shock reaches the supercritical amplitude (F > G), the optical 
thickness (T ~ 0.3) diminished and the radiation became substantially nonequilibrium (F 
oTf~). Let us note that the temperature profiles obtained in the heated layer and on the 
shock front correspond qualitatively to computations of the initial stage of the convergent 
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shock of supercritical amplitude [21, 23]. However, in our case the "light kettle" regime 
examined in [21, 23] is apparently not realized in full measure since a certain quantity 
of light energy from the gas behind the shock front can exit through the contact boundary 
that is transparent according to the formulation taken for theproblem, by radiant heat 
conduction. 

As is seen from Fig. ib, as the wave amplitude grows two density jumps appear all the 
more clearly on the front: the first is compressive P/P0 = (~ + i)/(~ , I) ~ 4(~ = 5/3) 
and agrees with the point of the maximum temperature T+; the second (P/P0 ~ i0-i00) corres- 
ponds to the inflection point of an exponentially decreasing temperature profile T = Tf 
(i.e., at the same site where the temperature agrees with T = Tf). Up to a certain time 
there is one maximum of the velocity and pressure on the shock front that are located at 
the site of the second jump. The cumulative intensity grows sharply as the center of sym- 
metry is approached (R ~ 0.01R 0) so that each of the two density jumps that together form 
a certain spatial structure starts to move according to its own law. Two maximums corres- 
ponding to the mentioned density jumps appear here on the pressure and mass flow ratecurves. 
This is apparently associated with the splitting of the structure into two waves analogous 
to a "small" and "large" shock detected in [ii]. Although the temperature and density pro- 
files in Figs. la and b (curve 5) are qualitatively slightly modified after the splitting, 
the laws of jump motion become substantially different as shown below.* 

The time t/t c = 0.993 (curves 4 in Figs. la and b) corresponds to focusing of a "small" 
shock and is characterized by achievement of the first absolute temperature maximum T/T 0 = 
65,000 and the limit density Pp/P0 = 8.2 that corresponds with 10% accuracy to the value 
Pp/P0 = 7.34 obtained in computations for a perfect gas with y = 5/3. As is seen from Fig. 
Ib, a peak in the maximal density pm/p0 = 63, on the right of the limit value, due to 
the mass precompression of substance, is significantly greater than in the perfect gas with 
7 = 5/3 (pm/p0 = 32.7 [25]). If we discard the influence of the "large" shock, then it 
can be concluded that the qualitative pattern at the time of focusing the "small" shock 
is identical to the pattern of shock collapse in a perfect gas. Curves 1-3 in Figs. la 
and b correspond to stand-off of the "large" shock from the center of symmetry, the time 
of collapse (t = t c) and the reflection of the "small" shock. The essential singularity 
of this phase of development of the problem processes under consideration is the attainment 
of quite high degrees of compression p : 6.47"10 ~ P0 as compared with the adiabatic case. 

Equilibrium of the radiation with the substance (F = oTf #) holds in a gas of large 
optical thickness upon convergence of a strong radiating shock of supercritical amplitude 

*Let Us note that in a computation with viscosity in [24], the convergent shock started 
to be slowed down as the temperature rose, hut after a certain time again became accelerat- 
ing although radically weakened. The processappeared as though dissociation of the discon- 
tinuity occurred at a certain small radius. 
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(Ff > Gf), and the gasdynamic motion behind the TS front is so intense, as multiple reflec- 
tion of perturbations from the center of symmetry specifies. Relative temperature and den- 
sity profiles at the times t/t c = 1.000, 0.9996, 0.9990, 0.9934, 0.9240, 0.9020, 0.6276, 
0.5875, 0.5536, 0.4534 (lines i-i0) are shown in Figs. 2a and b for the modification Z = 
30 as a function of the distance traversed by the converging shock to the center. In this 
computation the initial optical thickness in the cavity was �9 ~ 104 and after the first 
TS traversal diminished in the heated layer to �9 ~ i00. For such values of T the pertur- 
bation front is reflected from the center of symmetry and is propagated toward the conver- 
gent gasdynamic flow. At the time of TS reflection (t/t c = 0.587, Figs. 2a and b), gas 
compression at the center reaches P/P0 = 6.6 while the temperature almost does not change. 
Only repeated TS passage from the shock front to the center (t/t c = 0.902) increases the 
temperature almost 5 times in the heated layer, where the gas compression diminishes to 
P/P0 ~ 2-4. A new reflection of the flux from the center would agree in time with the ap- 
proach of the shock, whose amplitude and flux F- from the front start to grow sharply. The 
optical thickness ahead of the shock front here diminishes to �9 ~ 2 and the heated layer 
becomes isothermal. From the time t/t c ~ 0.9530 the radiation starts to become nonequilib- 
rium in nature (q = Tf/(Ff/o) z/4 > i), but until the shock arrival in the first cell from 

the center q does not exceed i0. Splitting of the convergent wave structure is not detec- 
ted in this modification. For comparison, we mention that the degree of nonequilibrium 
q was above 300 for the Z = i modification at the time t/t c = 0.9910 that is near to the 
time of splitting. 

Trajectories of the TS fronts are presented in Fig. 3 for the considered modifications 
of the shock focusing computations (for Z = i and 30 they agree, line i) and the shock (Z = 
i, 30, lines 2 and 3). Line 4 is the adiabatic shock converging in a perfect gas with 
7 = 5/3. The dashes depict the trajectory of the "large" shock after the splitting. As 
is seen, the fronts of the first TS up to R/R 0 < 0.i and the shock fronts up to the arrival 
at the first cell of the computational mesh from the center move according to the law R ~ 
t -(k-l) . Strongly radiating shocks stand off from the adiabatic; however, as analysis of 
the computational data shows, they have identical self-similar dependence of the gasdynamic quan- 
tities at the front: p ~ T ~ R -2(k-I), u ~ R -(k-l). In a perfect gas (7 = 5/3) k = 1.453 
[25], the numerical values are k = 1.25 and 1.3, respectively, for Z = 30 and I. The last 
quantity agrees with that presented in [Ii], however, it is obtained here without taking 
account of electron-ion viscosity and heat conduction, the difference in the temperatures 
of these components and their mutual energy exchange. 

Bounded values dependent on assignment of the computational viscosity are always ob- 
tained in the numerical computations in the neighborhood of the focusing of any shocks. 
The limit temperature and pressure in a perfect gas grow according to a self-similar law 
Tp ~ pp ~ AR,-2(k-l) as the detail in describing the neighborhood of the center of sym- 

metry increases (the size and number of the computational cells), where AR, is the minimal 
dimension at the time of compression of the first cell of the computational mesh from the 
center, while the density always remains constant. As the focus in neighborhood diminishes 
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in strongly radiating shocks, the limit parameters vary, firstly, not according to a self- 
similar law (apparently this is due to the general non-self-similarity of the problem of 
a convergent radiating shock) and, secondly, depend on the optical thickness of the gasdy- 
namic flow. A multiple increase in the limit compression Pp/P0 ~ 102-104 accompanying the 
radiation cooling of the substance holds here in a radiating gas. Displayed in Fig. 4 are 
dependences of the temperature (solid lines) and density (dashes) for different computed 
sizes of the neighborhood of the center of symmetry at the time of shock collapse for a 
perfect gas (line i) and the modifications with Z = 1 and 30 (lines 2 and 3). As follows 
from the results presented, the cumulative energy density in the gas grows without limit 
in all cases and is not eliminated by energy transport by radiation; however, the nature 
of the accumulation in a perfect gas (finite density, infinite temperature) is modified 
in an optically thick medium (infinite density, finite temperature), which corresponds to 
the known deduction [5] obtained in the radiant heat conduction approximation. 

In discussing results of computations of convergent shocks by finite-difference methods 
it is impossible not to examine the question of the correctness and the limits of applica- 
bility of the solutions obtained. The necessary condition for the correctness of a numeri- 
cal solution in a perfect gas is its agreement with the self-similar solution (as was also 
mentioned in [9]). However, such a condition cannot be sufficient since conformity to the 
self-similar law is observed only on a bounded segment of the path at a certain distance 
from the center of symmetry. Consequently, the behavior of the numerical solution must 
be analyzed as the detail in the description of the focusing neighborhood increases. A 
study performed for the problem of a convergent shock in a perfect gas showed that a finite 
size of the neighborhood of the center of symmetry R, ~ AR,/R 0 can be found by numerical 
means because of the change in the quantity of cells, such that the distributions of all 
the gasdynamic quantities would agree with a certain accuracy for a computation with a 
diminished central cell of the difference mesh AR I for R/R 0 > R, at each time in both com- 
putations. By successive diminution of AR I (with the increase in the total number of cells) 
convergence of the profiles of the gasdynamic quantities can be achieved to any given accu- 
racy. This is due to the fact that the total energy E N RS-2k in the self-similar solution 
diminishes so strongly at the shock front as R + 0 that no influence is exerted on the gas- 
dynamic parameters of convergent and divergent (after reflection)flows. A numerical solu- 
tion successfully "avoids" difficulties at the center of symmetry by going from one branch 
to another of the asymptotic for R/R0 > R*. 

An analogous dependence of the total energy and the convergence of the profiles of 
the gasdynamics quantities hold in the analysis of strong radiating shock focusing. For 
instance, as the number of cells grows from 50 to 70, 100, and 130 in the cavity with a 
simultaneous diminution of each preceding central cell size by three times, satisfactory 
agreement of the profiles is achieved on a 100 cell mesh. In these modifications the total 
energy de-excited with respect to time, referred to the total gas energy in the cavity (the 
integral is taken from R = 0 to the contact boundary), varied as follows at the time of col- 
lapse: 0.333, 0.317, 0.314, 0.313 (Z = i); 0.398, 0.386, 0.383, (Z = 30). 

On the basis of the above, the deduction can be made that the sufficient condition 
for correctness of the numerical solution is satisfied only outside a certain neighborhood 
R, of shock focusing. In the gasdynamic model for describing the medium the specific value 
of R, depends on energy dissipation mechanisms in the shock front being taken into account 
in the problem, (cases "a", "b", etc. [12]). The minimal focusing neighborhood will appar- 
ently be achieved when taking account of viscous effect in the compression shock. In fully 
ionized plasma this scale is commensurate with the Coulomb ion path length. A final deter- 
mination of the parameters for a cumulative convergent shock is possible only in a gaski- 
netic model. 

The authors are grateful to M. V. Babykin and L. I. Rudakov for attention to the 
research and discussions, and to V. S. Imshennik for a number of valuable remarks. 
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